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ABSTRACT: We introduce an attack against  encrypted web traffic that makes use solely of packet  timing 

information on the uplink.  This attack is thus imperviable to existing packet padding defenses. Additionally, not  

like existing approaches, this timing-only attack doesn't need the knowledge of the start/end of web fetches then 

is effective against traffic streams. We tend to demonstrate the effectiveness of the attack against both wired and 

wireless traffic, achieving mean success rates in more than 90%. Additionally to being of interest in its own 

right, this timing-only attack serves to spotlight deficiencies in existing defenses then to areas wherever it might 

be useful for virtual private network (VPN) designers to focus more attention. 

Keywords: Timing-only attacks, Network privacy, traffic analysis, website fingerprinting. 

 

I. INTRODUCTION 
 In this paper we have a tendency to take into account an attacker of the kind illustrated in Figure 1. The 

attacker will notice the time once packets traverse the encrypted tunnel within the transmission direction, 

however has no different info concerning the clients’ activity. The attacker’s objective is to use this information 

to guess, with high likelihood of success, the online sites that the client visits. What’s distinctive concerning the 

attack thought about here is that the attacker depends entirely on packet timestamp info whereas the 

antecedently reported attacks against encrypted internet traffic have primarily created use of observations of 

packet size and/or packet count info. 

 Our interest in timing-only attacks is twofold. Firstly, packet padding may be a comparatively easy 

defence against attacks that rely primarily on packet size, and so is presently either already out there or being 

enforced during a variety of popular virtual private networks (VPN) [2]. Secondly, different attacks supported 

packet counting [2], [3] are insensitive to packet artefact defences however need partitioning of a packet stream 

into individual web fetches so as for the quantity of packets related to every web fetch to be determined, which 

can be extremely difficult in observe on links where there aren't any clear pauses between web fetches. 

 In distinction, packet timing-based attacks aren't solely for the most part unaffected by packet padding 

defences however conjointly, as we'll show, don't need partitioning of the packet stream. Hence, they're 

probably a much necessary category of attack against current and future VPNs. whereas some work has been 

administrated using inter-arrival time information to classify the application (HTTP, IMAP etc.) [8], to our data, 

there's no previous work coverage use of timing information alone to construct a prosperous attack against 

encrypted web traffic.  

 The main contributions of this paper are as follows: (i) we have a tendency to describe an attack against 

encrypted web traffic that uses packet timing information alone, (ii) we tend to demonstrate that this attack is 

extremely effective against each wired and wireless traffic, achieving mean success rates in far more than 90th 

over Ethernet and wireless tunnels and successful rate of 58 against Tor traffic, (iii) we have a tendency to 

additionally demonstrate that the attack is effective against traffic streams i.e. back to back web page fetches 

wherever the packet boundaries between fetches are unknown.   

 

 
 

Fig. 1. Schematic illustrating attacker of the type considered. A client machine is connected to an 

external network via an encrypted tunnel (ssh, SSL, IPSec etc.). The attacker can detect the time when packets 

traverse the tunnel in the uplink direction, but has no other information about the clients activity.   
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 In addition to being of interest in its claim, notably in sight of the powerful nature of the attack, this 

timing-only attack additionally serves to focus on deficiencies in existing defences and then to areas wherever 

it'd be helpful for VPN designers to focus more attention. we have a tendency to note that, complementary to 

this work, in [3] it's demonstrated that once web fetch boundaries among a packet stream are noted then an 

NGRAM approach using packet count along with uplink/downlink direction data is additionally sufficient to 

construct a good attack against encrypted web traffic despite packet padding.  

 Hence, we can conclude that (i) uplink/downlink packet ordering and web fetch boundaries and (ii) 

uplink/downlink packet timing data are each sensitive quantities that need to be protected by a secure encrypted 

tunnel. Packet padding doesn't defend these quantities. Guiding defences against these two sets of packet stream 

options so looks a very important direction for future work. 

 

II. RELATED WORK 
 The general topic of traffic analysis has been the topic of much interest, and a large body of literature 

exists. a number of the earliest work specifically focused on attacks and defences for encrypted web traffic 

seems to be that of Hintz [7], that considers the Safe Web encrypting proxy. During this setup (i) web page 

fetches occur sequentially with the beginning and finish of every web page fetch known, and for every packet 

(ii) the client-side port number, (iii) the direction (incoming/outgoing) and (iv) The scale is determined. A web 

page signature is built consisting of the combination bytes received on every port (calculated by summing 

packet sizes), effectively such as the amount and size of every object within the web page. In [15] it's equally 

assumed that the number and size of the objects in a very web page may be determined and using this 

information a classification success rate of 75th is reported. Subsequently, Bissias et al. [1] thought of an 

encrypted tunnel setup where (i) web page fetches occur sequentially with the beginning and finish of every 

online page fetch better-known, and for every packet (ii) the size, (iii) the direction (incoming/outgoing) and (iv) 

the time (and thus additionally the packet ordering) is determined.  The sequence of packet inter-arrival 

times and packet sizes from a web page fetch is employed to form a profile for every online page in a target set 

and also the cross correlation between an determined traffic sequence and also the stored profiles is then used as 

a measure of similarity. A classification accuracy of 23rd is determined once employing a set of 100 web pages, 

rising to 400th once restricted to a smaller set of web pages.  Most later work has adopted primarily identical 

model as [1], creating use of packet direction and size information and assumptive that the packet stream has 

already been divided into individual web page fetches. as an example in [16] the timing information isn't 

thought of within the feature set, thus the attack is countered with defences like BuFLO in [3] resulting in 

successful rate of solely 100 percent. In [6] and [10] Bayes classifiers based on the direction and size of packets 

are considered whereas in [14] an SVM classifier is proposed. In [11] classification supported direction and size 

of packets is studied using Levenshtein distance as the similarity metric, in [13] using a Gaussian Bag-of-Words 

approach and in [16] using K - NN classification. In [2] using a SVM approach a classification accuracy of over 

80th is reported for each SSH and Tor traffic and also the defences thought of were typically found to be 

ineffective. Similarly, [3] considers Bayes and SVM classifiers and finds that a range of proposed defences are 

ineffective. In [5] remote inference of packet sizes from queueing delay is studied. 

 

III. ANATOMY OF A WEB PAGE FETCH 
 When traffic is carried over an encrypted tunnel, like a VPN, the packet source and destination 

addresses and ports and therefore the packet payload are hidden. we tend to also assume here that the tunnel 

pads the packets to be of equal size, in order that packet size information is additionally concealed, and that the 

beginning and end of an individual web fetch may additionally be concealed e.g. once the web fetch is 

embedded in a larger traffic stream.  

 
Fig. 2. Time traces of uplink traffic from 5 different Irish health-related web sites are shown. It can be seen that 

the web site time traces exhibit distinct patterns. The traces are shifted vertically to avoid overlap and facilitate 

comparison. 
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 An assailant sniffing traffic on the encrypted tunnel is thus ready solely to look at the direction and 

timing of packets through the tunnel, i.e. to observe a sequence of pairs , k = 1, 2, • • • in the uplink or downlink 

direction. Our experiments on use of uplink, downlink and uplink + downlink traffic recommend that downlink 

traffic provides no further information concerning timing patterns over uplink traffic. The reason is that the 

timing of ACKs in uplink traffic is correlated to it of downlink packets which implies that using solely uplink 

traffic provides sufficient information. Furthermore it may be easier for an eavesdropper to access unmodified 

uplink traffic on the first hop, (given the traffic comes immediately from the source, whereas the corresponding 

downlink traffic may well be morphed using inter-flow transformations e.g. flow mixing, split and merge [17]). 

We tend to therefore focus on an attacker which will solely observe the timestamps , k ∈  Kup := : dκ = −1} 

related to uplink traffic 

 Figure 2 plots the timestamps of the uplink packets sent throughout the course of winning five 

completely different health-related web content (see below for details of the measurement setup). The x –axis 

indicates the packet number k within the stream and therefore the y-axis the corresponding timestamp tk in 

seconds. It may be seen that these timestamp traces are clearly completely different for every web site, and it's 

this observation that motivates interest in whether or not timing analysis might by itself (without extra 

information like packet size, uplink/downlink packet ordering etc.) be sufficient to successfully de-anomymise 

encrypted web traffic.  

 To gain insight into the variations between the packet timestamp sequences in Figure 2 and, 

significantly, whether or not they are genuinely associated with characteristics of every web page rather than to 

other factors, it’s useful to think about the method of fetching a web page in more detail. To fetch a web page 

the client browser starts by opening a TCP connection with the server indicated by the URL and problems an 

hypertext transfer protocol GET or POST request to that the server then replies. As the client parses the server 

response it problems additional GET/POST requests to fetch embedded objects (images, css, scripts etc.).  

 These additional requests may be to different servers from the original request (e.g. once the object to 

be fetched is an advert or is hosted in a separate content-delivery network), in which case the client opens a TCP 

connection to every new server in order to issue the requests. fetching of these objects might successively 

trigger the fetching of further objects. Note that asynchronous winning of dynamic content mistreatment, e.g. 

AJAX, will result in a fancy sequence of server requests and responses even after the page has been rendered by 

the browser. Also, generally the TCP connections to the various servers are held open till the page is totally 

loaded so that they can be reused for later requests (request pipelining during this method is nearly universally 

employed by trendy browsers).  

 
 

Fig. 3. This figure represents a typical web site query. It starts by requesting the index page. Then as 

the browser parses through this page more objects are fetched in parallel. Some objects may also be outsourced 

to 3
rd

 party web sites which have their own pipelines. Dynamic content may be updated at intervals, as indicated 

in the last two lines of the figure, and connections tend to close in groups. 

  

This web fetch method is illustrated schematically in Figure 3. We tend to build the following more 

detailed observations: 1) Connection to third-party servers. Fetching an object located on a thirdparty server 

needs the opening of a new TCP connection thereto server, over which the HTTP request is then sent. The TCP 

connection handshake introduces a delay (of a minimum of one RTT) and since the pattern of those delays is 

related to the web page content it can potentially assist in identifying the web page. 2) Pipelining of requests. 

Multiple objects located on the same server lead to many GET/POST requests being sent to that server, one after 

another. because of the dynamics of TCP congestion control, this burst of consecutive requests will have an 

effect on the timing of the response packets in a predictable manner that after once more will doubtless assist in 

identifying the web page. 3) Asynchronous requests. Dynamic content, e.g. pre-fetching via Ajax, can cause 

update requests to a server with large inter-arrival times which will potentially act as a web page signature. 4) 

Connection closing. once a web page fetch is completed, the associated TCP connections are closed. A FIN/ 

FINACK/ACK exchange closes each connection and this burst of packets can have quite distinctive timing that 

permits it to be known. Since the number of connections is related to the number of distinct locations where 

objects in the web page are stored, it changes between web pages.  

 Our aim is to use timing features like these, that vary relying upon the web page fetched, to create a 

timing signature which permits us to spot that web page is being fetched based on timing information solely. 
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IV. COMPARING SEQUENCES OF PACKET TIMESTAMPS 
 Suppose we've got two sequences of packet timestamps t := , i = 1, 2, • • • , n and t := , j = 1, 2, • • • , m. 

Note that for simplicity we tend to re-label the uplink packet indices to begin from one and to extend 

consecutively since none of our analysis can rely on this. Note also that the sequence lengths n and m aren't 

assumed to be the same. To proceed we want to outline an appropriate measure of the distance between such 

sequences. 

 

A. Network Distortion of Timestamp Sequences 

 The packet stream determined throughout a web page fetch is affected by network events throughout 

the fetch. Changes in download rate (e.g. because of flows starting/finishing within the network) tend to 

stretch/compress the times between packets. Queuing within the network conjointly affects packet timing, with 

queued packets experiencing each larger delay and tending to be additional bunched together.  

 

 
 

Fig. 4. Illustrating impact of changes in packet loss on the packet timestamp sequence. The bottom 

sequence shows the packet sequence at connection closing of a loss-free web fetch, while the top sequence 

shows the corresponding section from a different fetch of the same web page that was subject to packet loss and 

exhibits TCP retransmissions and DupACKs.  

  

Link-layer retransmission on wire-less links includes a similar impact to queuing. Similarly to changes 

in download rate, the result is primarily to stretch/compress the times between packets. Packet loss introduces a 

“hole” within the packet stream where the packet have to be compelled to have arrived and also affects the 

timing of later packets due to the action of TCP congestion control (which reduces the send rate on packet loss) 

and retransmission of the lost packets. for instance, Figure 4 shows uplink measurements of packet 

retransmissions and duplicate ACKs at the end of two fetches of the same web page wherever it can be seen that 

these have the impact of stretching the packet sequence. 

 

B. Derivative Dynamic Time Warping 

 Our interest is in a measure of the distance between packet sequences that is insensitive to the kinds of 

distortion introduced by the network, so the distance between packet streams t and t related to fetches of a 

similar web page at completely different times is measured as being small, and ideally the distance between 

fetches of various web pages is measured to be large. to the present finish we tend to use a variant of Dynamic 

Time warping (DTW) [9]. DTW aims to be insensitive to variations between sequences that are as a result of 

stretching/compressing of time so may be expected to at least partly accommodate the consequences of changes 

in download rate, queuing delay etc.  

 We outline a warping path p to be a sequence of pairs, , k = 1, 2, • • • , l with ( pki , pkj ) ∈  V := ×j j 

satisfying boundary conditions p1i = 1 =j p1 , pli = n, pl = m and step-wise constraints i ( pki+1, pk+1) ∈  Vpki , 

pkj := ∩ , v ∈  ∩}, k = 1, • • • , l −1. That is, a warping path maps points from one timestamp sequence to 

another such that the beginning and finish points of the sequences match (due to the boundary conditions) and 

also the points are monotonically increasing (due to the step-wise constraints). This is often illustrated 

schematically in Figure 5, wherever the two timestamp sequences to be compared are indicated to the left and 

above the matrix and also the bold line indicates an example warping path. Let Pmnl ⊂ V l denote the set of all 

warping paths of length l associated with two timestamp sequences of length• :Pmnl → n and m respectively, 

and let Ct ,t ( )R be a cost function so that Ct ,t ( p) is that the value Of warping path p ∈  Pmnl. 
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Fig. 5. Illustrating a warping path. The dashed lines indicate the warping window. 

 

 Our interest is within the minimum cost warping path. p∗ (t,t) ∈  arg min p∈  Pmnl Ct ,t ( p). In DTW 

the cost operate has the separable form Ct ,t ( p) = l where k=1 ct ,t ( pk , pk ) ct ,t : V → R, during which case 

optimal path p∗ (t,t) be efficiently found using the backward recursion, ( pki , pkj ) ∈  arg min Ck one + ct ,t ( pi 

, p j ) (1) ( pi , p j )∈Vk + Ck = Ck+1 + ct ,t ( pki , pkj ) (2) where Vk = ( pi , p j ) ∈  , k = l − 1, l − 2, • • • and 

initial condition Cl = ct ,t (n, m) When there's quite one optimal solution at step (1), we choose ( pki , pkj ) 

uniformly at random from amongst them. 

 
Fig. 6. Example DTW alignment and warping paths between two sequences vs cost function ct ,t used, window 

w = 0.1. 

 

  In this example the length l of the warping path is 73 when a Euclidean cost is used and 54 with the 

derivative cost. (a) Euclidean cost. (b) Derivative cost. A common selection of element-wise cost is that the 

Euclidean norm ct ,t ( pi , p j ) = (tpi − tp j )2. However, in our data we found that this cost can result in all the 

elements of one sequence that are beyond the last element of the other sequence being matched to that single 

element. For this reason and also to improve robustness to noise on the timestamp values (in addition to 

misalignment of their indices), following [9] we instead use the following element-wise cost ct ,t (pi , p j ) = ( Dt 

( pi ) − Dt ( p j ))2 (3) where Dt (i ) = (ti −ti− )+(ti+ −ti− ) , i −= max i one, one} and i + = 2 t . Observe that Dt 

(i ) is akin to the derivative of sequence t at index i .  

 Further, we constrain the warping path to remain within windowing distance w of the diagonal (i.e. 

within the dashed lines indicated on Figure 5) by setting C( p) = +∞ for paths p ∈  Pmnl for which | pki − pkj | > 

max, |m − n|} for any k ∈  . Figure 6b illustrates the alignment of points between two sequences obtained using 

this approach and for comparison Figure 6a shows the corresponding result when using Euclidean cost. The 

figure shows the warping paths on the right-hand side and an alternative visualization of the mapping between 

points in the sequences on the left-hand side. Observe that when Euclidean cost is used the warping path tends 

to assign many points on one curve to a single point on the other curve. As noted in [9] this can be best-known 

to be a feature of Euclidean cost. As compared, use of the derivative distance tends to mitigate this impact and 

choose a warping path with fewer horizontal and vertical sections.  
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C.  F -Distance Measure 

 Given two timestamp sequences, the warping path could be a mapping between them. With relevancy 

Figure 5, sections of the warping path that lie parallel to the diagonal correspond to intervals over which the two 

sequences are well matched. Sections of the warping path that are parallel to the x- or y-axes correspond to 

intervals over that the two sequences are poorly matched. This suggests using the fraction of the overall warping 

path which is parallel to the x- or y-axes as a distance measure, which we tend to refer to as the F-distance. In 

more detail, let p = , k = 1, • • • , l be a derivative DTW warping path relating timestamp sequences t and t , 

obtained as described in the previous section. 

 

 
Fig. 7. Illustrating method for calculating the F-distance between two timestamp sequences. (a) Sequence 

alignment. (b) Warping path. 

 

  We partition the warping path into a sequence of sub paths among each of which either pki or pkj 

remain constant and that we count the sub paths which are longer than one. as an example, for the setup shown 

in Figure 7 there are five sub paths: (1, 1); (2, 2), (2, 3); (3, 4), (4, 4), (5, 4); (6, 5); (7, 6). two of those sub paths 

contains more than one pair of points, namely (2, 2), (2, 3) and (3, 4), (4, 4), (5, 4), and these correspond, 

respectively, to the vertical section and the horizontal section on the corresponding warping path shown in 

Figure 7b.  

 Formally, define κ 1 := 0 < κ 2 • • • i – I := l such < < κr 1 < κr that for each s = 1, • • • , r − 1 (i) either 

pk1 = pk2 ∀ k1, k2 ∈  {κs + jj∀ k1, k2 ∈  {κs + 1, • • • , κs+1} 1, • • • , κs+1} or pk1 = pk2 and (ii) either κs+1 =l 

or condition (i) is violated for some k , k ∈  {κs I • • • j s+1 + 1 } i.e. each subsequence is maximal. , κ Note that 

pk = pk for all k = 1, • • • , l (due to warping path step-wise constraints) and so in condition (i) it's not  possible 

for both pki and pkj to be constant. We are now's a position to define the F-distance measure between timestamp 

sequences t and t , namely: s κs+1 – κs φ (t , t ) := κs+1 −κs >1 (4) n + m where κs , s = 1, • • • , r are the 

constant subsequences in minimal warping path p∗ (t , t ). It can be seen that φ ( p) takes values in interval [0,1], 

and is 0 when sequences t and t are identical (in which case the warping path p lies on the diagonal in Figure 5). 

For the example in Figure 7 the F-distance φ ( p) is (2 + 3)/13 = 0.385. 

 

V. DE-ANONYMISING WEB FETCHES OVER AN ETHERNET TUNNEL 
 In this section we have a tendency to present measurements of web page queries carried out over an 

Ethernet tunnel and evaluate the accuracy with which the web page being fetched can be inferred using only 

packet timing information. The whole project together with codes, scripts and datasets for all measurement 

campaigns is available at [4]. The primary dataset consists of home pages of each of the top Irish health, 

financial and legal web sites as ranked by www.alexa.com under its Regional/Europe/Ireland category in 

November 2014. We tend to prune the pages that fail to load and then for each of the top a hundred sites we 

carry out a hundred fetches of the index page yielding a complete of 10,000 individual web page fetches in a 

dataset.  

 For comparison we collected two such datasets, one where the pages of each web site are fetched 

consecutively over an hour and a second where the pages are fetched each hour over a period of 5 days. In these 

datasets the browser cache is flushed between every fetch in order that the browser always starts in a very recent 

state. Additionally, a 3rd dataset was collected consisting of the same 10,000 web fetches however currently 

without flushing of the browser cache between fetches. the web pages were fetched over a period spanning 

November 2014 to January 2015. A watir-web driver script on Firefox 36.0 was used to perform the web page 

fetches and tcpdump to record the timestamps and direction (uplink/downlink) of all packets traversing the 

tunnel although solely packet timestamps on the uplink were truly used. 
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A. Hardware/Software Setup 

 The network setup consists of a client that routes traffic to the net over a gigabit Ethernet LAN. The 

client machine is a Sony VGN-Z11MN laptop with an Intel core 2 duo 2.26GHz processor and 4GB of memory. 

It’s running Ubuntu Linux 14.04 LTS Precise. 

 

B. Classifying Measured Timestamp Sequences 

 We use the F-distance measure φ (•, •) described in Section IV to check measured uplink timestamp 

sequences, with windowing parameter w = 0.2 unless otherwise stated. Figure 8 shows example scatter plots 

obtained using this distance measure. in more detail, from the set Ti of measured timestamp sequences for the i-

th web site we choose a sequence t i that minimizes t ∈Ti φ (t , t i ) then use ti as the exemplar for the i -th web 

page. 

 

 
Fig. 8. Scatter plots for 4 different web pages using Fdistance measure φ. In (a) two relatively distinct web 

pages are compared while the web pages in (b) are relatively similar. 

 

 In Figure 8 we then plot φ (t , t i ) for each of the timestamp sequences t measured for web page i and 

also for timestamp sequences measured for another web page. in the example in Figure 8a it is seen that the 

distance measure is so effective at separating the measured timestamp sequences of the two web pages thought 

of into distinct clusters, therefore potentially providing a basis for accurately classifying timestamp sequences 

by web page. Figure 8b shows an example of a scatter plot where the separation between the 2 web pages is less 

distinct and so classification are often expected to be less reliable.  

 As we'll see, examples of this latter sort prove to be fairly rare. We considered two approaches for 

using φ (•, •) to classify timestamp sequences: K –Nearest Neighbors and Naive Bayes Classification.  

 

1) K-Nearest Neighbours:  

 In this method, for each web page i we tend to sort the measured timestamp sequences t ∈ Ti used for 

training in ascending order of sum-distance and select the top three to use as exemplars to represent this web 

page. Once presented with a new timestamp sequence, its distance to the exemplars for all of the training web 

pages is calculated and these distances are sorted in ascending order. Classification is then carried out by 

majority vote amongst the highest K matches. 

 

2) Naive Bayes Classifier: 

 For every web page i from the measured timestamp sequences Ti used for training we tend to choose ti 

∈  arg min t ∈Ti φ (t , t ) (in addition we tend to conjointly take into account selecting ti to minimize the 

variance of the distance φ, see below) and then fit a Beta distribution to the empirical distribution of φ (t , t i ) 

for t ∈  Ti . Let pi (•) denote the probability distribution obtained in way. once presented with anew timestamp 

sequence t , we tend to calculate the probability pi (t ) of this sequence belonging to web page i and choose the 

web page for which this probability is greatest.  
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Fig. 9. K – Nearest Neighbours classification performance, no browser caching. (a) K = 1. (b) K = 3. (c) K = 5. 

 

C. Experimental Results 

 We begin by presenting results for the dataset wherever pages are fetched consecutively and therefore 

the browser cache is flushed between fetches. Figure 9 details the measured classification accuracy using the K 

–NN approach, for numerous values of K . We tend to use 10-fold cross validation, where the {10|the ten}0 

samples of every site are divided into ten random subsets and for every subset we tend to use the remaining 

ninety samples as the coaching knowledge to search out the exemplars and use the 10 samples within the subset 

as the validation knowledge. The rates for these ten subsets for each site are summarized and displayed in the 

figure.  Each of the boxes indicate the twenty fifth, five hundredth and Seventy fifth quartiles and therefore the 

lines indicate the maximum and minimum values. The mean success rates for K = 1, K = 3 and K = 5 are 

95.01%, 94.97% and 94.98% respectively. These results for uplink traffic compares to a most success rate of 

92.5% when using packet timestamps on the downlink for the classification, indicating that use of uplink or 

downlink timestamps has very little impact on the performance of this classification attack. The results also are 

compared for a subset of fifty websites selected randomly from the present 100, see Table I, that conjointly 

confirms that the result of population size is minor. For comparison, the success rates once web pages are 

fetched hourly over five days are 90.88%, 90.72% and 90.74%. Observe that there's a little (about 5%) reduction 

in success rate, which we tend to assume is related to the time-varying nature of a number of the web sites. We 

tend to discuss the impact of content and speed variability on the performance in Section VII.  

 

 
Fig. 10. Naive Bayes classification performance, no browser caching. (a) Minimum mean. (b) Minimum 

variance. 
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 Figure 10 plots the corresponding results obtained using the naive Bayes approach. Performance is 

calculated once the exemplar for each web page is chosen to minimize the mean and therefore the variance of 

the distance. The mean success rates are 85.2% and 56.3% respectively. Since the performance is systematically 

worse than that of the K –NN classifier we tend to don't take into account the naive Bayes approach further in 

the rest of the paper. 

 

D.  Commonplace vs. Cached: 

 Totally different Versions of Same web page on first visiting a new web page a browser requests all of 

the objects that form the web page. However, on subsequent visits several objects could also be cached e.g. 

images, css and js files, etc. in the Mozilla browser, once the address of a web page is just entered again shortly 

after the complete page is fetched, since the cached copy of an object has not nevertheless expired the cached 

copy are used when rendering the web page and it'll not be fetched over the network by the browser. Bbut the 

browser are often forced to reload the web page by pressing F5 where it then sends a request for the objects and 

therefore the server might either come back an abbreviated NOT modified response if the cached object is 

actually still recent or return the complete object if it's modified.  

 Ultimately a full refresh are often induced by pressing Ctrl+F5 that requests for the complete version of 

the web page as if no object is cached before. Hence, the network traffic generated by a visit to a web page 

could differ significantly counting on whether or not it's been visited recently (so the cache is fresh) or not. 

 

 
Fig. 11. K-Nearest Neighbour classification performance, with browser caching using 3 exemplars for each site. 

K = 5. 

 

 Classification of cached web pages are often expected to be tougher than for non-cached pages since 

there's less network traffic and so less knowledge upon which to base the classification decision. Figure 11 

presents the measured classification accuracy once browser caching is enabled. This knowledge is for the case 

where requests that reply with NOT modified use the cached content, which is perhaps the most common form 

of caching used in practice. It can be seen that no matter the small size of the network traffic in this setup, the 

overall success rate  for identifying web pages remains in far more than 95th.  

 

E.  Web pages outside the training Set 

 The experiments within the previous 2 sections are conducted with the idea that the adversary is aware 

of that the web page that the user has visited is among the set of web pages for which training knowledge has 

been collected. when this assumption need not hold, i.e. the user might need fetched a web page outside of the 

adversary’s training info, then we can use the following approach to first classify whether or not a measured 

packet timestamp sequence t is associated with an internet web site in the training set or not. Recall that, as 

mentioned in Section V-B1, for every web page i within the training set we've got three exemplar packet 

timestamp sequences that are used for K –Nearest Neighbor classification. 

 Given a packet timestamp sequence t we tend to use K -Nearest Neighbor classification to estimate the 

closest web page w(t) among the training set and let Fmin (t ) denote the minimum F-distance between the 

exemplars for this web page and therefore the measured timestamp sequence. We can then use this value as the 

basis for a simple classifier. Namely, when Fmin (t ) is larger than a specified threshold (which might rely upon 

w(t )) then we tend to estimate t as lying outside the training set, and when Fmin (t ) is below the threshold then 

we tend to estimate t as lying within the training set. It remains to select an appropriate threshold for every web 

page within the training set.  
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Fig. 12. Distribution of the F-distance between the measured packet timestamp sequences in the training dataset 

and the exemplar packet sequences for the best guess. 

 

 Data is shown for when sequences of each web site are within the training dataset and for when they 

are removed. Ethernet channel, no browser caching. For every timestamp sequence t within the training set 

Figure 12 plots the distribution of Fmin (t) vs the index of the web site that t is measured. This figure could be a 

box and whiskers plot with the min, max and quartiles shown. for each site we tend to then take away its 

information from the training set and repeat the calculation. The distribution of those values is also shown in 

Figure 12. It can be seen that, unsurprisingly, the F-distance is Systematically higher when a web site is 

excluded from the training set. We tend to choose the threshold for classification to try to separate these 2 sets of 

value. Namely, we tend to take the average of the x percentile of the lower values and therefore the (100−x ) 

percentile of the higher values as our threshold, where 0 ≤ x ≤ 100 could be a design parameter. 

 

 
Fig. 13.Mean and standard deviation of false negative and false positive error rates vs the choice of F distance 

threshold (specified via design parameter x). (a) Mean, (b) Standard Deviation. 

 

 The classification error rate vs the threshold parameter x used is shown in Figure 13a. two error rates 

are shown, first of all the fraction of web pages that are out with the training set however that are classified as 

lying within it (which we tend to refer to during this section as false positives) and secondly the fraction of web 

pages that are among the training set however that are classified as lying out with it (which we tend to refer to as 

false negatives). The standard deviations of those error rates across the web pages are also shown in Figure 13b. 

It can be seen that thresholding with x = 90 yields equal error false negative and false positive rates of about 

8.0%, that is near the complement of the reported success rate reported within the preceding section. 

 

VI. MEASUREMENT RESULTS FOR OTHER CHANNELS 
 In this section we tend to extend consideration from Ethernet to a number of various network channels. 

Namely, we tend to take into account packet timestamp measurements taken from a commercial femtocell 

carrying cellular wireless traffic, from a time-slotted wired UDP channel (of interest as a potential defence 

against timing analysis) and from the first hop (i.e. between the client and the Tor gateway) of a Tor channel. 

similar to before, in every case we tend to collected packet timestamp knowledge for a hundred fetches of the 

home pages of each of the top one hundred Irish health, financial and legal websites as ranked by 

www.alexa.com. 

 

 

http://www.alexa.com/
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A. Femtocell Traffic 

 A femtocell is an eNode B cellular base station with atiny low physical footprint (similar to a wifi 

access point) and restricted cell size (typically about 30m radius). it's intended to enhance cellular coverage 

indoors, filling in coverage holes and improving download rates, whereas additionally offloading traffic from 

the macro cell network. Wired backhaul to the cellular operators network is via a user supplied network 

connection e.g. a home DSL line. Since femtocells are usually user installed, physical access to the backhaul 

connection is straightforward and it’s an easy matter to route backhaul traffic via a sniffer. Mobile operators are, 

of course, responsive to this and backhaul traffic is thus secured via use of an IPSec encrypted tunnel. Within 

the setup thought of here, the femtocell backhaul is over a university gigabit Ethernet connection and that we 

used tcpdump to log packets passing over this link.  

 

1) Hardware/Software Setup: 

 The client computer is the same Sony laptop used for the Ethernet measurements. It currently uses a 

Huawei K3770 HSPA USB Broadband dongle to connect wirelessly to the internet via a Femotcell. The 

femtocell may be a commercial Alcatel-Lucent 9361 Home Cell V2-V device. The femtocell wired backhaul is 

connected to a campus network via a NetGear en 108 TP Ethernet hub. A monitor computer that is running on a 

AMD Athlone 64 X2 dual Core Proc 5000 + cpu and 4GB memory is also connected to the current hub and logs 

all packets. The client and monitor computers both run Ubuntu Linux 14.04 LTS Precise.  

 

 
Fig. 14. Femtocell K -Nearest Neighbours classification performance, no browser caching, K = 5. 

 

2) Results: 

 In contrast to the comparatively clean Ethernet channel thought of in Section V-C, we tend to found 

that traffic passing over the wireless femtocell link is often distorted by factors like wireless and cellular noise, 

encoding/decoding delays, cellular control plane traffic etc. These distortions usually seem as shifts along the x - 

axis of the packet timestamp patterns and/or as delays within the y-axis. The measured performance employing 

a K -NN classifier using three exemplars for every website and K = 5 is shown in Figure 14. The mean success 

rate is 91.8%, that compares with the mean success rate of ninety fifth observed in Section VC when employing 

a clean Ethernet channel. It can be seen that use of the wireless channel tends to scale back the classification 

accuracy, as might be expected due to the additional loss/delay over the wireless hop. However, the reduction in 

accuracy is minor. 

 

B.  Time Slotted UDP Tunnel 

We developed a custom tunnel using ip tables, net filter and net filter-queue. The tunnel trans-ports packets over 

a UDP channel in a time slotted fashion and therefore the slot size is a configurable parameter.  

 

1) Hardware/Software Setup: 

 The experimental setup is identical to that used in Section V apart from the employment of a 

customized tunnel. On the client computer all web traffic is captured using the OUTPUT net filter hook, 

encapsulated into UDP packets and sent to a server at the other side of the tunnel. The server, which has an 

AMD Athlone 64 X2 dual Core Proc 5000+ and 4GB memory, fetches these UDP packets using the 

PREROUTING hook, extracts the payload and sends them by via the FORWARD hook to the outgoing Ethernet 

interface. Similarly, incoming packets from the internet are encapsulated into UDP packets via FORWARD 

hook on the server and sent to the client that captures them using the PREROUTING hook, extracts the payload 

and forwards this to the application layer.  
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Fig. 15. Time-slotted tunnel K -Nearest Neighbours classification performance, no browser caching, K = 5.(a) 

Slot size: 1ms. (b) Slot size: 10ms. 

 

2) Results: 

 Figure 15 shows the measured performance employing a K-NN classifier where three exemplars are 

chosen from each website and K = 5. The overall success rate is 880 yards when the tunnel slot size is 1ms and 

sixty three once the tunnel slot size is increased to 10ms. we also considered slot sizes larger than 10ms, but 

since we tend to found such large slot sizes tended adversely have an effect on browser performance (and 

therefore would likely be problematic in practice) we tend to don't include them here. This performance 

compares with successful rate of ninety fifth over a plain Ethernet tunnel. As may be expected, time-slotting 

decreases the classification success rate since it adds timing “noise”. However, even with a relatively giant slot 

size of 10ms the impact on performance isn't proportional to the sacrifice we tend to make in terms of delay and 

throughput (with such an oversized slot size we are capping the downlink throughput to 150KB/s). This 

approach thus seems to be unappealing as a sensible defence against the timing based attack considered here. In 

fact additional refined forms of defence could also be more practical, however we tend to leave thought of these 

to future work as they seemingly involve advanced trade-offs between network performance and resistance to 

attack that we lack space to address here. 

 

C. Tor Network 

In this section we tend to consider measurements of web page queries over the Tor network. Tor is an overlay 

network of tunnels that aims to enhance privacy and security on the net.  

 

1) Hardware/Software Setup: 

 The experimental setup is that the same as in Section V except that the traffic from the client browser, 

Mozilla Firefox 36.0 is proxified over Tor v0.2.5.11. Note that we tend to conjointly explored use of the Tor 

browser however found that a major set of the online sites failed to load, timed out or needed a CAPTCHA to be 

solved or every page fetch that created complications when scripting fetches. We tend to conjointly investigated 

using Firefox with Tor pluggable transports (such as obfs4 etc.) however we tend to found that using these add-

ons had a large impact on delay such that most websites fail to load even after five minutes. As before, the 

browser cache is flushed between fetches. 

 

2) Randomized Routing: 

 Tor uses randomized routing of traffic over its overlay network in an attempt to make linking of 

network activity between source and destination harder. It is expected that rerouting can have a major impact on 

the timestamp sequence measured throughout a web fetch since changes in path propagation have a direct 

impact on the time between an outgoing request and receipt of the corresponding server response, and also 

impact TCP dynamics since congestion window growth slows with increasing RTT. variations in loss rate, 

queuing delay etc. on completely different routes also are doubtless to impact measured timestamp sequences.  
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Fig. 16. Mean and max RTTs measured during 100 fetches of the web page www.medicalcouncil.ie. Changes 

due to Tor rerouting are evident. 

 

 The max RTT in (b) is in fact the idle time between when the last packet is received until the browser is 

closed, hence why it is significantly larger than the mean RTT plotted in (a). (a) Mean RTT for packets of each 

sample. (b) Max RTT for packets of each sample. The impact of Tor rerouting on measured RTT is illustrated in 

Figure 16,that plots the mean and max delay between sending of a TCP data packet and receipt - of the 

corresponding TCP ACK for repeated fetches of the same web page (although his data isn't available to an 

attacker, in our tests it is in fact accessible for validation purposes).  

 

 
Fig. 17. Time traces of uplink traffic measured when fetching www.medicalcouncil.ie. Measurements are shown 

both when using vanilla Firefox and when using Firefox with the Tor plugin. 

 

 Abrupt, substantial changes within the mean RTT are evident, particularly in Figure 16b. These 

changes persist for a period of time as Tor solely performs rerouting periodically. Figure 17 illustrates the 

impact of Tor on the packet timestamps measured throughout a web page fetch.  

 

http://www.medicalcouncil.ie/
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3) Results: 

 
Fig. 18. Tor network K -Nearest Neighbours classification performance, no browser caching, K = 5. 

 

 Figure 18 details the measured classification accuracy using the K –NN approach, where three 

exemplars are chosen from every web site and a window size of w = 0.2 is used to accommodate the warping 

between samples. The mean success rate is 56.2% that compares with the mean success rate of 95.0% when 

using a clean Ethernet channel. As may well be expected, use of the Tor network considerably reduces 

classification accuracy. However, the success rate of 56.2% compares with a baseline success rate of a hundred 

and twenty fifth for a random classifier over one hundred websites so still is probably going to represent a 

significant compromise in privacy. We tend to note also that this compares favorable with the 54.6% rate 

reported by Panchenko et al in [14] against Tor traffic using packet size and direction information. 

 

D. Alternative proposed Channels 

 A number of alternative channels are proposed within the literature as a defence against traffic analysis 

attacks. Wright et al. [18] suggest a traffic morphing technique that maps the packet sizes of 1 website to the 

packet distribution of another site. This defence fails to beat the attack considered here since it makes use solely 

of timing info and doesn't use packet size info. This is also the case for all of the packet –size based defences 

proposed within the HTTPOS scheme introduced in [12]. a potential defence against timing attacks is to change 

the packet timing pat-tern by delaying transmissions. However, though this might be expected to counter timing-

based attacks like that considered here such defences also will have a control on delay. for instance, BuFLO 

introduced in [3] is analogous to the time slotting method that we consider above and that seems to be 

impractical given its substantial impact on delay and bandwidth, with 190th bandwidth overhead reported in 

[16]. 

 

VII. EFFECT OF LINK SPEED AND CONTENT CHANGE ON CLASSIFICATION 

PERFORMANCE 
 By looking closely at performance of websites, it may be seen that the total mean success rate obtained 

in every measurement campaign isn't monotone amongst individual websites. In this section, we tend to 

investigate possible reasons behind the poor performance of certain websites. we tend to use the same Ethernet 

dataset from Section V-C where samples are fetched hourly over five days. The study of different situations like 

femtocell, cached etc. provides similar results. 1) Network Speed. The link speed between the client and every 

web server varies from a web site to another. it’s conjointly completely different between samples of the same 

page. To investigate the impact of network speed on the classification performance, we calculated peak 

downlink speed throughout every fetch (the results for uplink and uplink + downlink speed is similar). Then so 

as to compare the metrics, values for samples of every page are normalized and their variance is evaluated.  

 

 
Fig. 19. Scatter plot of max link speed standard deviation and median against success rate. Samples are taken 

hourly for 5 days over ethernet channel.(a) Standard deviation. (b) Median. 
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Fig. 20. Scatter plot of sample length and GET/POST request count standard deviation against success rate. 

Samples are taken hourly for 5 days over Ethernet channel. (a) Sample length. (b) GET/POST count.  

 

 Figure 19a illustrates the scatter plot of normalized standard deviation of link speed against success rate 

of every web site. It may be seen there's no strong correlation between these two metrics that will recommend 

that a web site with more variable link speed ought to result a lower success rate. Similar comparison is 

additionally studied with median speed for every web site (Figure 19b) to indicate that having an overall faster 

link speed doesn't guarantee a poor classification performance. 2) Sample Length and GET/POST Requests 

Count. for every web site we tend to plot the standard deviation of the normalized number of uplink packets (a 

measure of the variability of the web page over time) and also the corresponding success rate (see Figure 20a). 

The results for uplink and uplink + downlink are similar. We tend to conjointly provided the same plot for max 

number of GET/POST requests for every web site (Figure 20b). It may be seen that, there's no strong correlation 

between the these metrics and success rates that is suggestive that the classification attack is fairly insensitive to 

variability of web page content over time. 3) IP Connections, Active TCP ports. so as to research the robustness 

of the attack against parallel connections, for every web site we tend to plot the median number of serving ip 

connections and active TCP ports against their corresponding success rates. 

 

 
Fig. 21. Scatter plot of median open IP connections and active ports count against success rate. Samples are 

taken hourly for 5 days over ethernet channel. (a) Open IP connections. (b) Active TCP ports. 

 

 As illustrated in Figures 21a and 21b, again there's no clear correlation between mentioned metrics that 

is suggestive that the number of active IPs/ports for every web site, that represents the number of parallel 

connections, has no effect on the performance of our proposed attack.The above results suggest that there's no 

strong correlation between the performance of our attack and link speed, little content modification and number 

of parallel connections. 
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 However the selections of exemplars are essential to the performance of the attack. In particular when 

the content modification is quite a threshold, the distinction between samples will now not be ignored by the 

attack. An example of this misbehavior may be seen for web site #10 within the measurement campaign 

considered during this section, where two completely different versions of the page were observed throughout 

the experiment. 

 In result, one exemplar represents one version while two others represent another version of the page. 

This causes K -NN method to fail collecting enough votes for a successful classification that successively ends 

up in successful rate of 31st. To overcome this issue, separate sets of exemplars are needed to represent every 

version of a web page so as to successfully classify future samples. 

 

VIII. FINDING A WEB PAGE WITHIN A SEQUENCE OF WEB REQUESTS 
 In the experiments presented so far we've assumed that among the observed packet timestamp stream 

the boundaries between totally different web fetches are best-known. This can be most likely a reasonable 

assumption on gently loaded links where the link is often idle between web fetches. However, not only might 

this assumption be 

less applicable on more heavily loaded links however it conjointly permits for a comparatively simple means 

that of defence, namely insertion of dummy packets to obscure the boundaries between web fetches. During this 

section we have a tendency to thus extend consideration to links where web fetches are carried out in a back to 

back fashion such that the boundaries between web fetches can not be simply known. The basic idea is to sweep 

through a measured stream of packet timestamps making an attempt to match sections of it against the timing 

signature of a web page of interest. This exploits the very fact that our timing-only attack doesn't basically 

depend upon information of the start/end times of web fetch (unlike previous approaches that use packet counts 

to classify web pages).  

 In more detail, to locate a target web page within a stream of packet timestamps we tend to first choose 

three measured packet timestamp sequences for that web page to act as exemplars (as previously). Then, we 

tend to sweep through the stream of timestamps in steps of ten packets, extract a section of the stream of the 

same length as every exemplar (plus ten to cover the step size) and calculate the distance between the section 

and the exemplar. Once sweeping through the complete stream we tend to choose the location within the stream 

with least distance from the exemplars because the likely location of the target web page within the stream. 

Whereas this process assumes that the target web page is present within the packet stream, using a similar 

approach to that in Section V-E we could extend this approach to decide whether or not the web page is present 

by appropriately thresholding the distance (when the measured least distance is above the threshold, the page is 

judged to not be present in the stream). 

 

A. Results 

 We constructed a test dataset as follows. For every run we tend to choose one of the 100 websites to be 

the target. We then uniformly at random pick up to four different websites from the remaining websites. The 

chosen websites are then permuted randomly and fetched one after another with a pause after every fetch acting 

as a “thinking period”. The utmost time allowed for every fetch to finish is 25 seconds i.e the length of every 

pause is chosen uniformly at random from 5-25 seconds. Repeating this for all websites within the dataset, we 

tend to created one hundred test runs.  

 

 

 
Fig. 22. Illustrating locating of a web page within a packet stream. 
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 The page www.iscp.ie shown in red triangles is an example of a web page which is successfully located 

among 2, 3, 4 and 5 consecutive web fetches. The vertical lines show the first SYN packet of each web page. (a) 

Two consecutive web fetches. (b) Three consecutive web fetches. (c) Four consecutive web fetches. (d) Five 

consecutive web fetches. Using the classification approach described above we tried to spot the location within 

every packet stream. Figure 22 presents four samples of this, showing the position within a stream with least 

distance from the exemplars of a target web page. The success rate results for streams of 2-5 websites are 

summarized in Table II. 

 

 
 With this approach we tend to achieved a maximum success rate of 82 for locating the target web page 

within every packet stream within a position error of w.ls packets, where w is the window size at which DTW 

operates (0.2 in our setting) and ls is the average length of the three exemplars that are determined for every web 

site s separately. Given the limited info being used, this is a remarkably high success rate and indicates the 

ability of the timing-only attack. However, it is seen that the success rate starts to lower as the range of 

consecutive fetches grows which ends up in a extended packet stream that may probably include similar patterns 

to the target web page. Furthermore web pages with shorter length are less doubtless to be located properly due 

to their shorter signatures that are more probably to appear within the middle of a larger net trace. 

 

IX. SUMMARY AND CONCLUSIONS 
 We introduce an attack against encrypted web traffic that makes use solely of packet timing 

information on the uplink. Additionally, in contrast to existing approaches this timing-only attack doesn't need 

knowledge of the start/end of web fetches and so is effective against traffic streams. We tend to demonstrate the 

effectiveness of the attack against both wired and wireless traffic, consistently achieving mean success rates in 

more than 90th. Table I summarizes our measurements of the success rate of the attack over a variety of network 

conditions. Study of downlink and a preliminary study of uplink + downlink traffic recommend very little 

difference from uplink results presented in this paper, given timing patterns of uplink and downlink are 

powerfully correlative. 

 Moreover, the proposed attack proves to be robust against totally different link speed, totally different 

range of parallel connections and little content modification, having the ability to keep up overall success rate of 

ninety one for measurements collected over a course of five days. However the threshold that the attack remains 

resilient to content modification is to be studied. We tend to leave any investigation of those matters for future 

work. Since this attack solely makes use of packet timing information it's run proof to existing packet padding 

defences. We tend to show that time slotting is also insufficient to prevent the attack from achieving a high 

success rate, even once relatively large time slots are used (which could be expected to significantly distort 

packet timing information). 

 Similarly, randomized routing as used in Tor is also not effective. more subtle forms of defence could 

also be more practical, however we tend to leave consideration of those to future work as they probably involve 

complicated trade-offs between network performance (e.g. increased delay and/or reduced bandwidth) and 

resistance to attack that warrant a lot of detailed study than is possible here. In addition to being of interest in its 

own right, by highlighting deficiencies in existing defences this timing only attack points to areas where it might 

be useful for VPN designers to focus further attention.  
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